
IEEE Communications Magazine • November 201862 0163-6804/18/$25.00 © 2018 IEEE

Abstract

This article presents an overview of the securi-
ty mechanisms in the NDN architecture that have
been developed over the past several years. NDN
changes the network communication model from
the delivery of packets to hosts identified by IP
addresses to the retrieval of named and secured
data packets. Consequently, NDN also fundamen-
tally changes the approaches to network security.
Making named data the centerpiece of the archi-
tecture leads to a new security framework that
secures data directly, and uses name semantics to
enable applications to reason about security and
to automate the use of cryptographic keys. In this
article, we introduce NDN’s approaches to securi-
ty bootstrapping, data authenticity, confidentiality,
and availability.

Introduction
Named data networking (NDN), a proposed
Internet architecture, changes the basic network
communication model. Instead of delivering pack-
ets to receivers identified by IP addresses, NDN
lets consumers request desired data using appli-
cation-layer names. Naming data enables NDN
to secure data directly at the network layer. This
is achieved by making the content of every Data
packet verifiable and, optionally, confidential.

In this article, we provide an overview of
NDN’s security framework and illustrate the
developed mechanisms with example prototype
realizations, showing how all the components in
the framework function together. We assume that
readers have some basic knowledge of cryptogra-
phy, but are not necessarily familiar with the NDN
architecture.

The article is organized as follows. The fol-
lowing section provides a brief description of
the NDN architecture and introduces an exam-
ple application, which will be used throughout
the article to illustrate the use of various security
mechanisms. Following that, we state the goals
of the NDN security design, identify the major
challenges, and introduce the basic supporting
components of the solutions. Then we describe
the NDN security bootstrapping process, and
explain NDN’s current solutions to data authen-
ticity,1 confidentiality, and availability. Throughout
this article, we aim to explain how NDN enables
data to remain secure independent of underly-
ing communication channels and how it enables

applications to validate received data packets
independent of from where they are fetched.
Furthermore, we illustrate how applications can
utilize name semantics to augment reasoning
about which cryptographic keys to use for which
content, instead of blindly relying on the “yes-
or-no” model provided by third-party certificate
services. Then we discuss the basic differences
between network security solutions in NDN and
TCP/IP that result from the two different network
architectures; we also identify remaining issues in
NDN’s security solution development. The final
section concludes the article.

We hope that this article can serve as a guide
to NDN security efforts for readers interested in
NDN research, as well as a useful demonstration
of new approaches to network security that differ
from today’s common practices.

Background

Named Data Networking

From 10,000 feet, one might view the basic
idea of NDN as shifting HTTP’s request (for a
named data object)-and-response (containing
the object) semantics at the application layer to
the network layer [1]. Being a network-layer pro-
tocol, NDN’s requests/responses work at a net-
work packet granularity — each request, carried
in an NDN Interest packet containing the name
of the requested data, fetches one NDN Data
packet (Fig. 1); neither type of packet contains an
address. Applications that produce data are called
producers, while those requesting data are called
consumers.

In addition to being network layer packets,
NDN Data packets also differ from HTTP data
objects in two other important ways:
•	 All NDN Data packets are immutable; when

a producer changes the content of a Data
packet, it generates a new packet with a
new name to distinguish the different ver-
sions of the content.

•	 Every NDN Data packet carries a signature
generated using its producer’s cryptographic
key at the time of data creation, binding its
name to its content.

Named, secured data packets provide a basic
building block for securing NDN communica-
tions.

An NDN network runs routing protocol(s) to
propagate the reachability of data names, similar

Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis, Yanbiao Li, Alexander Afanasyev, and Lixia Zhang

INFORMATION-CENTRIC NETWORKING SECURITY

The authors present an
overview of the security
mechanisms in the NDN
architecture that have
been developed over the
past several years. NDN
changes the network
communication model
from the delivery of
packets to hosts identified
by IP addresses to the
retrieval of named and
secured data packets.
Consequently, NDN also
fundamentally changes
the approaches to net-
work security.

Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Spyridon Mastorakis, Yanbiao Li, and Lixia Zhang are with UCLA;
Eric Newberry was with the University of Arizona and is now with the the University of Michigan; Alexander Afanasyev is with Florida International University.

Digital Object Identifier:
10.1109/MCOM.2018.1701147

An Overview of Security Support in
Named Data Networking

1 Data integrity is ensured at
the same time as authenticity.

IEEE Communications Magazine • November 2018 63

to how IP networks use routing protocols to prop-
agate the reachability of IP addresses. Each NDN
router forwards Interest packets according to their
names, recording both the interfaces from which
Interests are received and the interfaces to which
they are forwarded in a pending interest table
(PIT). Once an Interest packet reaches a Data
packet with a matching name, the Data packet
will follow the reverse path of the corresponding
Interest to reach the consumer, satisfying the cor-
responding PIT entry on each router along the
way. Data packets can also be cached at routers
to serve future requests for the same data. This
stateful forwarding plane creates a closed feed-
back loop, enabling routers to make informed
Interest forwarding decisions based on observed
performance.

An eXAmpLe AppLIcAtIon: ndnfIt

To aid the reader’s comprehension, we use
NDNFit [2], a prototype NDN application for
tracking and sharing personal fitness activity, as
an illustrative example to explain NDN’s securi-
ty mechanisms.2 Because NDNFit handles sensi-
tive personal information, it requires strong data
authenticity and confi dentiality.

As a typical use case, assume that a user
“Alice” wants to use NDNFit to record her daily
fi tness information. Alice runs an app “Sensor” on
her mobile phone and an app “Analyzer” on her
laptop. “Sensor” collects Alice’s daily time-loca-
tion information, while “Analyzer” produces ana-
lytics and visualizations from the data produced
by “Sensor.” Alice controls the whole system
using another app “Owner.” Figure 2 shows the
data and control fl ow in NDNFit.

NDNFit requires that all data produced by
“Sensor” and “Analyzer” be authenticatable and
that any data alterations or data created by unau-
thorized producers be detectable. Furthermore,
to keep her data confidential, Alice only grants
“Analyzer” the privilege to access the fi tness data
produced by “Sensor” — no one else should be
able to read this data. We illustrate later how
these objectives are achieved via NDN’s security
mechanisms.

An overvIew of the
ndn securIty desIgn

The NDN security framework is built on pub-
lic-key cryptography. As described previously,
NDN secures data directly, enabling applications
to achieve data authenticity, confi dentiality, and
availability independent of underlying commu-
nication channels and regardless of whether the
data is in transit or at rest (e.g., being cached in
the network or stored at end nodes). At the same
time, NDN aims to provide highly usable security:
to the greatest extent possible, all cryptographic
key management and operations should be auto-
mated and enforced by the system itself, minimiz-
ing the reliance on manual confi guration.

In the rest of this article, we call applications
and all other communication participants in an
NDN network entities.3 Each entity owns one or
more names. An entity proves its ownership of a
name through an NDN certificate, which binds
the name and a cryptographic public-private key
pair possessed by the entity. We call each certi-

fi ed name an identity. Each entity can issue certifi -
cates for the sub-namespaces it delegates to other
entities.

chALLenges And overvIew of soLutIons

Utilizing public key cryptography to validate com-
munications requires NDN to address the follow-
ing three challenges.

Establishing Trust Anchor(s): All cryptograph-
ic verifi cations must terminate at a pre-established
trust anchor. After a trust anchor is installed, an
entity can verify other entities’ signatures by ver-
ifying their certifi cates along the certifi cate chain
to the trust anchor.4 Trust anchors are usually
installed via out-of-band mechanisms, and the
development of these supporting mechanisms
depends on the trust anchor model in use. In
today’s practice, trust anchors are commonly
established via the following means:
• Obtaining certifi cates from commercial certif-

icate authorities (e.g., TLS certifi cates)
• Installing a single global trust anchor (e.g.,

DNSSEC)
• Establishing trust in an ad hoc manner (e.g.,

Trust-On-First-Use, Web-Of-Trust).
NDN utilizes a diff erent trust anchor model. NDN
assumes that the authority of each networked
system (e.g., an organization, a smart home,
or a cloud service provider) establishes its own
trust anchor(s) and that all the entities under that
authority can discover these trust anchors through
local system settings. This trust model resembles
that of the Simple Distributed Security Infrastruc-
ture (SDSI/SPKI) [4] in trust anchor establishment.

Providing Effective Solutions for Trust Man-
agement: Effective solutions must enable appli-
cations to express their own trust policies, and
the system must be able to execute these policies
automatically. In NDN, entities are able to obtain

Figure 1. In an NDN network, one Interest packet can fetch one Data packet
from its producer, from a data repository, or from a router’s cache.

Data
Consumer

Interest Packet

Data Packet NDN network

Content
Signature

Content Name

Other Optional
Parameters

Content Name

ProducerRepository

Figure 2. NDNFit application workfl ow.

1. Authorize publishing
2. Define encryption rules Grant access

Sensor Analyzer encrypted
data

Owner

encrypted
data

Alice’s Phone Alice’s Laptop
NDN

Network

Alice

2 The NDNFit use case
described in this article is a
simplifi ed version of the actual
implementation.

3 An entity can be an admin-
istrative unit (e.g., a country,
a university, a company), a
home, a user, a node, or an app
process. The task of allocating
names to entities is beyond
the scope of the NDN design,
just like the task of assigning IP
addresses is beyond the scope
of the TCP/IP design.

4 An alternative is to estab-
lish trust via a web of trust as
described in [3].

IEEE Communications Magazine • November 201864

NDN certificates and learn trust policies from
trustworthy parties. A certificate enables an entity
to generate verifiable signatures for its data and
build trust relationships with other entities. The
trust policies inform each entity which keys, for
a given name or name prefix, should be used for
signature generation and verification. As we will
describe later, NDN can express users and appli-
cations’ trust policies by defining the relationships
between data names and signing key names.

Providing Usable Key Management Solutions:
Signing, verification, encryption, and decryption
involve the use of cryptographic keys, requiring
mechanisms to assign and deliver the correct
keys or certificates to the parties in need in an
automatic manner. Taking advantage of its struc-
tured, semantically meaningful data names, NDN
enables application developers to define naming
conventions to systematically construct the names
of the cryptographic keys/certificates used for
signing, verification, encryption, and decryption.
As we explain later, these naming conventions
in turn enable individual entities to automatically
construct the names of the required cryptograph-
ic keys for a given data name and to fetch keys,
improving the usability of key management (certif-
icate issuance, certificate provisioning, etc.).

Basic Components of NDN Security

The NDN security framework makes use of the
following three basic components.

Digital Keys: NDN treats cryptographic keys in
the same way as any other named data, allowing
them to be retrieved using Interest-Data exchang-
es at the network layer.

Certificates: An NDN certificate represents its
issuer’s endorsement of the binding between the
name and the public key; note that the name of
the key is not necessarily under the issuer’s name-
space, for example, in a web of trust system [3].
A certificate is a Data packet carrying a public
key and can be fetched like any other Data pack-
et. The issuer will put its signing key name with
other auxiliary information into Data’s signature
info field. Certificate names follow the naming
convention “/<prefix>/KEY/<key-id>/<is-
suer-info>/<version>,” where the “pre-
fix” is the name to which the key is bound, and
the components after “KEY” are the key id, the
issuer-specified information, and the certificate
version number. For example, a certificate name

/ndnfit/alice/KEY/001/N-testbed/002
indicates that:
•	 The certificate owner is /ndnfit/alice.
•	 The certified key has the id 001, which iden-

tifies an instance of Alice’s public key.
•	 The certificate signer sets the issuer informa-

tion to N-testbed, which indicates that it is
an NDN testbed-issued certificate.

•	 The certificate version is 002.
Trust Policies: Applications define trust poli-

cies that specify which entities are trusted for pro-
ducing which piece of data, and which key should
be used for which data namespace and for what
purpose. For example, a trust policy can require
that the key used to authenticate data must not
be used to sign encryption keys.

The above three basic components are used
in the security mechanisms described below.
The next section shows how an entity can obtain
these three components from the security boot-
strapping process.

Security Bootstrapping in NDN
Security bootstrapping is the process through
which an entity obtains its trust anchor and
certificate, and learns trust policies. The NDN-
Fit example described earlier must go through
security bootstrapping to be properly initialized.
In this example, since Alice is the owner of her
devices and data, Alice’s certificate is set to be
the trust anchor. In this article, we assume that
Alice’s certificate has the name /ndnfit/alice/
KEY/001/N-testbed/002, whose meaning is
explained above.

Obtaining Trust Anchors

An entity needs trust anchors to verify other enti-
ties’ authenticity. Trust anchors are expected to
be either pre-configured or securely obtained
through some out-of-band means. Following the
SDSI model, the NDN security design assumes
that different systems establish their own trust
anchors and that entities within those systems
decide or develop their own means to obtain trust
anchors.

In our NDNFit example, we take a simple
approach of manually installing Alice’s certificate
into the “Owner,” “Sensor,” and “Analyzer” appli-
cations.

Obtaining Certificates

To generate Data packets with valid names and
verifiable signatures, a (producer) application
must first obtain a name and a certificate that cer-
tifies its ownership of that name. Consumer appli-
cations do not need to obtain identity certificates
for Data consumption, although they must obtain
trust anchors for data verification. Once the trust
anchor is obtained, an entity can identify a trust-
worthy certificate signer by checking its certificate
(e.g., a signer’s certificate is the trust anchor or
endorsed by the trust anchor), then request a cer-
tificate for itself. NDN security offers flexibility to
application developers in deciding how to obtain
certificates. Depending on the system design,
a cloud-based application may obtain its certifi-
cate from a centralized certificate service, while
a distributed application (e.g., P2P applications)
may obtain the certificate from its users. We have
developed the NDN certificate management sys-

Figure 3. The cryptographic relationship between the namespaces /ndnfit and
/ndnfit/alice, and between /ndnfit/alice and its sub-namespaces.

/ndnfit self-signed certificate

Signature

/ndnfit/KEY/…

/ndnfit/alice/KEY/…

Signature

Alice’s certificate

Other Entities

Sensor App

Digital Keys

Trust Policies

Anchors

Analyzer App

Digital Keys

Trust Policies

Anchors

/ndnfit

/ndnfit/alice

IEEE Communications Magazine • November 2018 65

tem (NDNCERT) [5] to process such certificate
requests automatically.

In our NDNFit use case, the trust anchor,
Alice’s certificate, resides in the Owner applica-
tion on her laptop. Owner plays the role of the
certificate signer by invoking application program-
ming interfaces (APIs) provided by NDNCERT.
Sensor and Analyzer are instructed to request
certificates from Owner using the NDNCERT
protocol, and Owner can approve the two apps
using customized out-of-band challenges (e.g.,
Alice may manually check the application’s PIN
code and approve the corresponding certificate
request). Two certificates, /ndnfit/alice/
sensor/KEY/… and /ndnfit/alice/analyz-
er/KEY/… , are then issued to the Sensor and
Analyzer apps, respectively.

Learning Trust Policies

To determine which cryptographic key is legiti-
mate to sign which Data packet when producing
new data or verifying received data, an applica-
tion needs to obtain trust policies after obtaining
the trust anchor. As we explain below, NDN apps
can define their trust policies using a trust schema,
which is simply a piece of named content that can
be retrieved like any other content. After obtain-
ing the trust anchor, an application can fetch and
verify the trust polices from trusted sources. Note
that there must be a preconfigured default trust
policy, which can be used to validate the Data
packets carrying trust policies. A simple default
policy may define that Data packets carrying trust
policies must be directly signed by a trust anchor
with a given name.

In our NDNFit example, Alice can configure
the trust policies through the Owner user inter-
face; then Owner produces trust policy Data
packets and signs them with Alice’s private key.
During security bootstrapping, Analyzer and Sen-
sor fetch the trust policy Data packets, verify them
using the trust anchor (Alice’s certificate), and
then save the policies for future use. As shown in
Fig. 3, after security bootstrapping, both Sensor
and Analyzer will trust Owner, and each will have
their own trust policy and certificate under the
namespace /ndnfit/alice.

The security bootstrapping of Alice’s own cer-
tificate takes place in a different network system
where the trust anchor is /ndnfit/KEY/…. Alice
learns of this trust anchor and obtains the certif-
icate /ndnfit/alice/KEY/… from the author-
ity of the namespace /ndnfit via some means
defined by NDNFit (we omit the details of this
process due to space limitations).

Data Authenticity
In this section, we show how NDN security helps
ensure data authenticity automatically. To enable
this supporting function, users must first define
their data acceptance policies.

After obtaining their certificates, the apps
Sensor and Analyzer can produce Data pack-
ets under their corresponding namespaces and
sign them using their corresponding private keys,
enabling consumers to authenticate the received
Data packets by verifying their signatures. NDN’s
rich name semantics enable applications to use
names to reason about trust and define trust pol-
icies. Trust policies help consumers validate a

received Data packet by checking whether the
packet is signed by the correct key according to
the policies. In this way, trust policies limit the
power of each signing key to Data packets with
specific names, supporting data authenticity at a
fine granularity. For instance, in our example, the
key /ndnfit/alice/sensor/KEY/… can be
limited to sign packets under the prefix /ndnfit/
alice/sensor only.

The authenticity and integrity of received Data
packets (some of them may be certificates) are
determined by a combination of the following
two factors.

Validation by Trust Polices: Structured data
names and key names provide explicit and mean-
ingful contexts for applications, enabling NDN
applications to define rules to only accept packets
signed by keys with specific names. More spe-
cifically, the data name, the signing key name,
the relationship between the key name and Data
name, and the trust anchor name must follow
application-defined rules. We have developed a
solution, called trust schema [6], to let users and
applications express their trust policies in a form
that can be directly executed by applications.

Signature Verification: To verify the signature
in a received Data packet, a consumer retrieves
the certificate of its producer (identified by the
key name in a dedicated section of the packet).
This certificate recursively points to its signer’s
certificate and finally arrives at a specified trust
anchor. The received data packet is considered
valid only if all the certificates in the above chain
have valid signatures and satisfy the trust policies.

Using Trust Schemas to Define Trust Policies

Trust schemas make use of NDN’s naming con-
ventions to enable systematic descriptions of trust
policies, namely: how Data packet names should
be structured, how packet signing key names
should be structured, how the components in a
Data packet name should be related to those in
its signing key name, and which trust anchor is
acceptable.

Upon receiving a Data packet, a consumer
application first uses its trust schemas to assess
the packet’s trustworthiness by examining its
certificate chain to the trust anchor — this takes
place before any cryptographic signature verifica-
tion is performed. For instance, as shown in Fig.
4, in addition to Alice (/ndnfit/alice), a user
named Bob (/ndnfit/bob) is also running an
NDNFit system. We assume that both Alice’s cer-
tificates and Bob’s certificates are signed by the
same trust anchor in the /ndnfit namespace.
Alice’s devices and Bob’s devices produce Data
packets under their own prefixes, namely /ndn-
fit/alice/sensor/example and /ndn-
fit/bob/sensor/example. Figure 4 shows
that there are two trust schemas. Schema “rule
1” accepts Data packets whose name prefix is /
ndnfit/alice, signing key name prefix is /ndn-
fit/alice/KEY, and certificate chain ends with
the trust anchor /ndnfit/alice. Accordingly,
only packets signed by Alice and strictly under
Alice’s prefix are accepted. “Rule 2” has a looser
requirement: all data packets with the name and
key name prefix /ndnfit and a certificate chain
eventually tracing to the anchor /ndnfit” can be
accepted. Consequently, rule 2 accepts packets

Trust schemas make

use of NDN’s naming

conventions to enable

systematic descriptions

of trust policies, namely:

how Data packet names

should be structured,

how packet signing

key names should be

structured, how the

components in a Data

packet name should be

related to those in its

signing key name, and

which trust anchor is

acceptable.

IEEE Communications Magazine • November 201866

produced by either Alice or Bob’s devices.

Signed Interests

Although Interest packets are not signed by
default, an Interest can and should be signed
when its use case requires authenticity. For exam-
ple, in an IoT scenario, when a received Inter-
est packet contains a command, a smart home
device needs to authenticate the sender of the
Interest before executing the command. Signed
Interests enable a controller to actuate IoT devic-
es. The Interest signature validation process is the
same as the one used to validate Data packets.

Data Confidentiality
NDNFit requires data confidentiality and access
control support to protect sensitive user informa-
tion. NDN’s basic approach to data confidenti-
ality is to use encryption. The Diffie-Hellman key
exchange protocol [7] is widely used to automati-
cally derive encryption keys for point-to-point ses-
sions. However, Diffie-Hellman does not apply
to constructing encryption keys for multi-party
communications, as is the case for NDN applica-
tions in general. By taking advantage of structured
names that can convey rich semantics, we have
developed named-based access control (NAC)
and its enhancement with attribute-based encryp-
tion (NAC-ABE) [8]. NAC/NAC-ABE automates
the key distribution process for both point-to-
point and multi-party applications. A schematized
access control solution [9] has also been pro-
posed to further systemize key management for
access control in NDN networks.

Name-Based Access Control

To grant access rights, NAC uses an “access
manager” (e.g., an “Owner” app) entity that pub-
lishes granular per-namespace access policies in
the form of key encryption keys (KEKs, plaintext
public keys) and key decryption keys (KDKs,
encrypted private keys). NAC explicitly appends
an encryption key name to the KDK name with
a separator ENCRYPTED-BY component; thus,
consumers can learn the key names after fetching
the encrypted Data packet.

In our NDNFit example, Alice is the owner of
all the Data packets produced under the prefix
/ndnfit/alice. Alice grants access rights to
Analyzer to read the data under the prefix /
ndnfit/alice/sensor produced by the “Sen-
sor” app.

Key Generation: To grant data access to Ana-
lyzer, Owner generates a new pair of keys and
produces two Data packets: a KEK packet carry-
ing the KEK in plaintext with the name /ndnfit/
alice/NAC/sensor/KEK/<Key-id> and a
KDK packet with the name /ndnfit/alice/
NAC/sensor/KDK/<Key-id>/ENCRYPT-
ED-BY/ndnfit/alice/analyzer/KEY/<An-
alyzer-Key-id> , which contains the KDK
encrypted using Analyzer’s public key.

Data Production: When producing data, Sen-
sor first generates a symmetric content key (CK)
for content encryption. Then it encrypts the con-
tent with the CK and packs the encrypted content
with the name of the corresponding CK, /ndn-
fit/alice/sensor/CK/<CK-id> (in plaintext)
into the Data packet named /ndnfit/alice/
sensor/example. Finally, it fetches the KEK
/ndnfit/alice/NAC/sensor/KEK/<Key-
id> and uses it to encrypt the CK, and publishes
this encrypted CK by putting it into another Data
packet with the name /ndnfit/alice/sen-
sor/CK/<CK-id>/ENCRYPTED-BY/ndnfit/
alice/NAC/sensor/KEK/<Key-id>.

Data Consumption: As shown in Fig. 5, Ana-
lyzer first fetches the Data packet produced by
Sensor, and the returned Data packet conveys
that its content was encrypted using the CK. Ana-
lyzer extracts the CK name from the content and
automatically generates an Interest to fetch the
corresponding CK. To decrypt the CK with the
corresponding KDK, the consumer follows the
naming convention and combines the KEK name
extracted from the CK Data name with its own
identity to construct the Interest /ndnfit/alice/
NAC/sensor/KDK/<Key-id>/ENCRYPT-
ED-BY/ndnfit/alice/analyzer and fetch-
es the KDK. Since the fetched KDK is encrypted
using Analyzer’s key, Analyzer can decrypt the
content and get the KDK, use the KDK to decrypt
the CK, and finally decrypt the content with the
CK.

Access Control Granularity

To control access control granularity, NAC
leverages the structured namespace of NDN.
For example, the above mentioned policy to
give access to the sensor data can add the
suffix step/8am/10am to the policy name-
space (/ndnfit/alice/NAC/sensor/
step/8am/10am), which will restrict access to
only the steps data and only during the specified
time interval.

Data and Certificate Availability

Improving Data Availability via In-Network Storage

Because NDN secures data directly, Data packets
can be retrieved from anywhere, including router
caches and other storage systems, regardless of
whether these cache or storage systems are trust-
worthy. All forwarders may cache passing Data
packets to satisfy future Interests.

Certificate Availability

NDN certificates are carried in Data packets,
enabling them to benefit from in-network storage.
To further improve the availability of certificates,
we also developed the NDN certificate bundle
[10] to allow each producer to collect all the cer-

Figure 4. Different trust schemas leading to different authentication result.

Data Name:
 Prefix /ndnfit/alice
Key Name:
 Prefix /ndnfit/alice
Anchor:
 /ndnfit/alice/KEY/<key-id>

Rule 1:

Data Name:
 Prefix /ndnfit
Key Name:
 Format /ndnfit/…/KEY/…
Anchor:
 /ndnfit/KEY/<key-id>

Rule 2:

Accept

Accept

Signed by:
/ndnfit/alice/sensor/KEY/<key-id>

/ndnfit/alice/sensor/example

Content

Signed by:
/ndnfit/bob/phone/KEY/<key-id>

/ndnfit/bob/phone/example

Content

IEEE Communications Magazine • November 2018 67

tificates in the certificate chain needed to verify
its data and bundle them together, making the
whole certificate chain available to consumers in
a single package.

In the NDNFit example, the producer, Sensor,
would combine the certificates needed to verify its
data in a certificate bundle. Specifically, the bundle
would contain the application certificate (/ndnfit
/alice/sensor/KEY/…) and the trust anchor
certificate (/ndnfit/alice/KEY/…). When a con-
sumer application needs to verify the retrieved data,
it can fetch all the needed certificates directly from
Sensor.

Discussion

Comparison of NDN and TCP/IP Security

There are two fundamental differences between
the NDN and TCP/IP security solutions which
originate from the fact that NDN names data,
whereas IP names hosts.

Securing Data vs Securing Channels: In TCP/
IP, the basic communication unit is a channel
between two processes. Consequently, proto-
cols such as IPSec and TLS secure communica-
tion channels (e.g., IP channels or TCP channels).
However, data delivered through protected com-
munication channels does not directly translate
to data authenticity — the data could have been
altered before entering the channel and loses
cryptographic protection as soon as it leaves the
channel; and when multiple parties communicate,
securing the channel between every pair of end-
points can quickly lead to scalability and man-
ageability issues. In contrast, NDN secures data
directly, removing any reliance on the security
of intermediate communication channels, allow-
ing applications to protect what really matters to
them — the data itself.

Establishing Trust Using Name Semantics:
Existing certificate authentication solutions lack
the means to effectively reason about trust. For
instance, current secure communication protocols
(e.g., HTTPS, QUIC) follow a common practice
of accepting a signature if it is (in)directly signed
by a pre-installed certificate authority. However,
[11] shows that commercial certificate authori-
ties themselves may not be reliable, and signature
verification alone is not enough to establish trust.
NDN takes a fundamentally different approach
to trust establishment. In NDN, entities may uti-
lize local authorities instead of commercial cer-
tificate authorities as trust anchors; trust policies
are expressed explicitly through the relationships
between semantically meaningful names in a sys-
tematic way, allowing applications to reason about
security rather than blindly accepting signatures;
and naming conventions help facilitate automated
key management, thus improving system usability.

Remaining Challenges

The development of the NDN architecture has
guided the creation of a new network security
framework, which brings both new opportuni-
ties and new challenges [12]. Regarding user pri-
vacy [13], on one hand, Interest packets carry
requested data names only, without disclosing
the consumer’s information; on the other hand,
Data packet names and signatures may disclose
a producer’s identity if they are not properly pro-

tected. Additionally, both the content store and
the pending interest table in an NDN router may
potentially increase the attack surface [14]. The
NDN research community is actively investigating
mitigations to these challenges.

Conclusion
In [15], we argued that, by naming and securing
data directly, NDN offers intrinsic advantages for
securing network communications. Evidence from
our efforts developing NDN security solutions
suggest that this is indeed true. Named, secured
Data packets (which can also carry certificates
and trust schemas) can easily be fetched from
anywhere, serving as a powerful building block for
security solution development. Furthermore, we
have learned that one can establish well-defined
naming conventions to define trust policies in a
systematic way, as well as to enable name-based
access control via encryption. We also learned,
the hard way, the importance of automating secu-
rity operations instead of leaving the problem to
application developers (who would simply make
applications work first by leaving security out).

Consequently, NDN secures network com-
munications in a more resilient, intuitive, and less
fragmented manner than the solutions in today’s
TCP/IP networks. The development process of
the NDN security model has convinced us that,
by building a network architecture based on
named data, we can effectively develop exciting
new network security solutions.

Acknowledgment

This work was partially supported by the National
Science Foundation under awards CNS-1345142,
CNS-1345318, CNS-1629009, and CNS-1629922.

References
[1] L. Zhang et al., “Named Data Networking,” ACM SIGCOMM

Comp. Commun. Review, 2014.
[2] H. Zhang et al., “Sharing mHealth Data via Named Data

Networking,” ICN, 2016, pp. 142–47.
[3] Y. Yu et al., “An Endorsement-Based Key Management Sys-

tem for Decentralized NDN Chat Application,” NDN, Tech.
Rep. NDN-0023, July 2014; http://named-data.net/publica-
tions/techreports/.

[4] R. L. Rivest and B. Lampson, “SDSI — A Simple Distributed
Security Infrastructure,” Crypto, 1996.

[5] Z. Zhang, A. Afanasyev, and L. Zhang, “NDNCERT: Univer-
sal Usable Trust Management for NDN,” Proc. 4th ACM
Conf. Information-Centric Networking, 2017, pp. 178–79.

[6] Y. Yu et al., “Schematizing Trust in Named Data Network-
ing,” Proc. 2nd ACM Int’l. Conf. Information-Centric Net-
working, 2015, pp. 177–86.

[7] M. Mosko, E. Uzun, and C. A. Wood, “Mobile Sessions in
Contentcentric Networks,” IFIP Networking, 2017.

Figure 5. The naming convention used in name-based access control.

Content Data

CK Data
CK Interest

KDK Data

KDK Interest

Extract CK name
from Data Content

Extract KDK name
from Data name

/ndnfit/alice/sensor/example

/ndnfit/alice/sensor/CK/<CK-id>
/ENCRYPTED-BY
/ndnfit/alice/NAC/sensor/KEK/<Key-id>

/ndnfit/alice/sensor/CK/<CK-id>

/ndnfit/alice/NAC/sensor/KDK/<Key-id>
/ENCRYPTED-BY
/ndnfit/alice/analyzer/KEY/<Analyzer-Key-id>

/ndnfit/alice/NAC/sensor/KDK/<Key-id>
/ENCRYPTED-BY
/ndnfit/alice/analyzer

IEEE Communications Magazine • November 201868

[8] Z. Zhang et al., “NAC: Automating Access Control via
Named Data,” IEEE MILCOM, 2018.

[9] C. Marxer and C. Tschudin, “Schematized Access Control for
Data Cubes and Trees,” Proc. ACM Conf. Information-Cen-
tric Networking, 2017.

[10] M. Mittal, A. Afanasyev, and L. Zhang, “NDN Certificate
Bundle,” NDN, Tech. Rep. NDN-0054, 2017.

[11] C. Cimpanu, “14,766 Let’s Encrypt SSL Certificates Issued
to PayPal Phishing Sites,” posted 24 Mar. 2017; https://
www.bleepingcomputer.com/news/security/ 14-766-lets-en-
crypt-ssl-certificates-issued-to-paypal-phishing-sites/.

[12] R. Tourani et al., “Security, Privacy, and Access Control in
Information-Centric Networking: A Survey,” IEEE Commun.
Surveys & Tutorials, 2017.

[13] C. Ghali, G. Tsudik, and C. A. Wood, “When Encryption Is
Not Enough: Privacy Attacks in Content-Centric Network-
ing,” Proc. 4th ACM Conf. Information-Centric Networking,
2017, pp. 1–10.

[14] C. Ghali et al., “Closing the Floodgate with Stateless Con-
tent-Centric Networking,” Proc. 2017 IEEE 26th Int’l. Conf.
Computer Communication and Networks, 2017, pp. 1–10.

[15] L. Zhang et al., “Named Data Networking (NDN) Project,”
NDN Tech. Rep. NDN-0001, Oct. 2010.

Biographies
Zhiyi Zhang (zhiyi@cs.ucla.edu) is a Ph.D. candidate in the
Computer Science Department at the University of California
Los Angeles (UCLA). He received his B.S. in computer science
from Nankai University, China. His research focus is on net-
work security, the Internet of Things, and information-centric
networking. He has done research in named data networking
(NDN) security, including name-based access control, certificate
management, and DDoS defense.

Yingdi Yu (yingdi@cs.ucla.edu) received his Ph.D. in computer
science from UCLA. His research interest is focused on distrib-
uted systems and network security. He is currently working as a
research scientist at Facebook.

Haitao Zhang (haitao@cs.ucla.edu) received his B.E and M.S
degrees from the Electronic Engineering Department at Tsing-

hua University in 2011 and 2013. He received his Ph.D. degree
from UCLA in 2018. His research interests are Internet architec-
ture and protocols. During his Ph.D. study, he worked on the
NDN project. He is now a software engineer at Uber Technol-
ogies, Inc.

Eric Newberry (emnewber@umich.edu) received his B.S. degree
in computer science from the University of Arizona in 2018. He
is currently a Ph.D. student in computer science and engineer-
ing at the University of Michigan. His research interests include
computer networks, edge computing, and network security.

Spyridon Mastorakis (mastorakis@cs.ucla.edu) is a Ph.D. can-
didate in the Computer Science Department at UCLA. He holds
an M.S degree. in computer science from UCLA and a B.S.
degree in electrical and computer engineering from the Nation-
al Technical University of Athens.

Yanbiao Li (lybmath@cs.ucla.edu) is currently a postdoctoral
scholar at UCLA. He received his Ph.D. degree in computer
science from Hunan University, China, in 2016. His research
interests focus on the future Internet architecture, edge comput-
ing and the Internet of Things.

Alexander Afanasyev (aa@cs.fiu.edu) is an assistant professor
in the School of Computing and Information Sciences at Florida
International University. He received his B.S. and M.S. degrees
in computer engineering from Bauman Moscow State Technical
University, Russia, and M.S. and Ph.D. degrees in computer sci-
ence from UCLA. His research focus is on the next-generation
Internet architecture as part of the NDN project, and he has
done research in multiple fields vital for the success of NDN.

Lixia Zhang [F] (lixia@cs.ucla.edu) is a professor in the Com-
puter Science Department at UCLA. She received her Ph.D.
from MIT and was a member of the research staff at Xerox
PARC before joining UCLA. She is a fellow of ACM, the recip-
ient of an IEEE Internet Award, and the holder of the UCLA
Postel Chair in Computer Science. Since 2010 she has been
leading the effort on the design and development of Named
Data Networking, a new Internet protocol architecture (http://
named-data.net/).

