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Abstract

This article presents an overview of the securi-
ty mechanisms in the NDN architecture that have 
been developed over the past several years. NDN 
changes the network communication model from 
the delivery of packets to hosts identified by IP 
addresses to the retrieval of named and secured 
data packets. Consequently, NDN also fundamen-
tally changes the approaches to network security. 
Making named data the centerpiece of the archi-
tecture leads to a new security framework that 
secures data directly, and uses name semantics to 
enable applications to reason about security and 
to automate the use of cryptographic keys. In this 
article, we introduce NDN’s approaches to securi-
ty bootstrapping, data authenticity, confidentiality, 
and availability.

Introduction
Named data networking (NDN), a proposed 
Internet architecture, changes the basic network 
communication model. Instead of delivering pack-
ets to receivers identified by IP addresses, NDN 
lets consumers request desired data using appli-
cation-layer names. Naming data enables NDN 
to secure data directly at the network layer. This 
is achieved by making the content of every Data 
packet verifiable and, optionally, confidential.

In this article, we provide an overview of 
NDN’s security framework and illustrate the 
developed mechanisms with example prototype 
realizations, showing how all the components in 
the framework function together. We assume that 
readers have some basic knowledge of cryptogra-
phy, but are not necessarily familiar with the NDN 
architecture.

The article is organized as follows. The fol-
lowing section provides a brief description of 
the NDN architecture and introduces an exam-
ple application, which will be used throughout 
the article to illustrate the use of various security 
mechanisms. Following that, we state the goals 
of the NDN security design, identify the major 
challenges, and introduce the basic supporting 
components of the solutions. Then we describe 
the NDN security bootstrapping process, and 
explain NDN’s current solutions to data authen-
ticity,1 confidentiality, and availability. Throughout 
this article, we aim to explain how NDN enables 
data to remain secure independent of underly-
ing communication channels and how it enables 

applications to validate received data packets 
independent of from where they are fetched. 
Furthermore, we illustrate how applications can 
utilize name semantics to augment reasoning 
about which cryptographic keys to use for which 
content, instead of blindly relying on the “yes-
or-no” model provided by third-party certificate 
services. Then we discuss the basic differences 
between network security solutions in NDN and 
TCP/IP that result from the two different network 
architectures; we also identify remaining issues in 
NDN’s security solution development. The final 
section concludes the article.

We hope that this article can serve as a guide 
to NDN security efforts for readers interested in 
NDN research, as well as a useful demonstration 
of new approaches to network security that differ 
from today’s common practices.

Background

Named Data Networking

From 10,000 feet, one might view the basic 
idea of NDN as shifting HTTP’s request (for a 
named data object)-and-response (containing 
the object) semantics at the application layer to 
the network layer [1]. Being a network-layer pro-
tocol, NDN’s requests/responses work at a net-
work packet granularity — each request, carried 
in an NDN Interest packet containing the name 
of the requested data, fetches one NDN Data 
packet (Fig. 1); neither type of packet contains an 
address. Applications that produce data are called 
producers, while those requesting data are called 
consumers.

In addition to being network layer packets, 
NDN Data packets also differ from HTTP data 
objects in two other important ways:
•	 All NDN Data packets are immutable; when 

a producer changes the content of a Data 
packet, it generates a new packet with a 
new name to distinguish the different ver-
sions of the content.

•	 Every NDN Data packet carries a signature 
generated using its producer’s cryptographic 
key at the time of data creation, binding its 
name to its content. 

Named, secured data packets provide a basic 
building block for securing NDN communica-
tions.

An NDN network runs routing protocol(s) to 
propagate the reachability of data names, similar 
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to how IP networks use routing protocols to prop-
agate the reachability of IP addresses. Each NDN 
router forwards Interest packets according to their 
names, recording both the interfaces from which 
Interests are received and the interfaces to which 
they are forwarded in a pending interest table 
(PIT). Once an Interest packet reaches a Data 
packet with a matching name, the Data packet 
will follow the reverse path of the corresponding 
Interest to reach the consumer, satisfying the cor-
responding PIT entry on each router along the 
way. Data packets can also be cached at routers 
to serve future requests for the same data. This 
stateful forwarding plane creates a closed feed-
back loop, enabling routers to make informed 
Interest forwarding decisions based on observed 
performance.

An eXAmpLe AppLIcAtIon: ndnfIt

To aid the reader’s comprehension, we use 
NDNFit [2], a prototype NDN application for 
tracking and sharing personal fitness activity, as 
an illustrative example to explain NDN’s securi-
ty mechanisms.2 Because NDNFit handles sensi-
tive personal information, it requires strong data 
authenticity and confi dentiality.

As a typical use case, assume that a user 
“Alice” wants to use NDNFit to record her daily 
fi tness information. Alice runs an app “Sensor” on 
her mobile phone and an app “Analyzer” on her 
laptop. “Sensor” collects Alice’s daily time-loca-
tion information, while “Analyzer” produces ana-
lytics and visualizations from the data produced 
by “Sensor.” Alice controls the whole system 
using another app “Owner.” Figure 2 shows the 
data and control fl ow in NDNFit.

NDNFit requires that all data produced by 
“Sensor” and “Analyzer” be authenticatable and 
that any data alterations or data created by unau-
thorized producers be detectable. Furthermore, 
to keep her data confidential, Alice only grants 
“Analyzer” the privilege to access the fi tness data 
produced by “Sensor” — no one else should be 
able to read this data. We illustrate later how 
these objectives are achieved via NDN’s security 
mechanisms.

An overvIew of the 
ndn securIty desIgn

The NDN security framework is built on pub-
lic-key cryptography. As described previously, 
NDN secures data directly, enabling applications 
to achieve data authenticity, confi dentiality, and 
availability independent of underlying commu-
nication channels and regardless of whether the 
data is in transit or at rest (e.g., being cached in 
the network or stored at end nodes). At the same 
time, NDN aims to provide highly usable security:  
to the greatest extent possible, all cryptographic 
key management and operations should be auto-
mated and enforced by the system itself, minimiz-
ing the reliance on manual confi guration.

In the rest of this article, we call applications 
and all other communication participants in an 
NDN network entities.3 Each entity owns one or 
more names. An entity proves its ownership of a 
name through an NDN certificate, which binds 
the name and a cryptographic public-private key 
pair possessed by the entity. We call each certi-

fi ed name an identity. Each entity can issue certifi -
cates for the sub-namespaces it delegates to other 
entities.

chALLenges And overvIew of soLutIons

Utilizing public key cryptography to validate com-
munications requires NDN to address the follow-
ing three challenges.

Establishing Trust Anchor(s): All cryptograph-
ic verifi cations must terminate at a pre-established 
trust anchor. After a trust anchor is installed, an 
entity can verify other entities’ signatures by ver-
ifying their certifi cates along the certifi cate chain 
to the trust anchor.4 Trust anchors are usually 
installed via out-of-band mechanisms, and the 
development of these supporting mechanisms 
depends on the trust anchor model in use. In 
today’s practice, trust anchors are commonly 
established via the following means: 
• Obtaining certifi cates from commercial certif-

icate authorities (e.g., TLS certifi cates)
• Installing a single global trust anchor (e.g., 

DNSSEC)
• Establishing trust in an ad hoc manner (e.g., 

Trust-On-First-Use, Web-Of-Trust). 
NDN utilizes a diff erent trust anchor model. NDN 
assumes that the authority of each networked 
system (e.g., an organization, a smart home, 
or a cloud service provider) establishes its own 
trust anchor(s) and that all the entities under that 
authority can discover these trust anchors through 
local system settings. This trust model resembles 
that of the Simple Distributed Security Infrastruc-
ture (SDSI/SPKI) [4] in trust anchor establishment.

Providing Effective Solutions for Trust Man-
agement: Effective solutions must enable appli-
cations to express their own trust policies, and 
the system must be able to execute these policies 
automatically. In NDN, entities are able to obtain 

Figure 1. In an NDN network, one Interest packet can fetch one Data packet 
from its producer, from a data repository, or from a router’s cache.
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2 The NDNFit use case 
described in this article is a 
simplifi ed version of the actual 
implementation.

3 An entity can be an admin-
istrative unit (e.g., a country, 
a university, a company), a 
home, a user, a node, or an app 
process. The task of allocating 
names to entities is beyond 
the scope of the NDN design, 
just like the task of assigning IP 
addresses is beyond the scope 
of the TCP/IP design.

4 An alternative is to estab-
lish trust via a web of trust as 
described in [3].
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NDN certificates and learn trust policies from 
trustworthy parties. A certificate enables an entity 
to generate verifiable signatures for its data and 
build trust relationships with other entities. The 
trust policies inform each entity which keys, for 
a given name or name prefix, should be used for 
signature generation and verification. As we will 
describe later, NDN can express users and appli-
cations’ trust policies by defining the relationships 
between data names and signing key names.

Providing Usable Key Management Solutions: 
Signing, verification, encryption, and decryption 
involve the use of cryptographic keys, requiring 
mechanisms to assign and deliver the correct 
keys or certificates to the parties in need in an 
automatic manner. Taking advantage of its struc-
tured, semantically meaningful data names, NDN 
enables application developers to define naming 
conventions to systematically construct the names 
of the cryptographic keys/certificates used for 
signing, verification, encryption, and decryption. 
As we explain later, these naming conventions 
in turn enable individual entities to automatically 
construct the names of the required cryptograph-
ic keys for a given data name and to fetch keys, 
improving the usability of key management (certif-
icate issuance, certificate provisioning, etc.).

Basic Components of NDN Security

The NDN security framework makes use of the 
following three basic components.

Digital Keys: NDN treats cryptographic keys in 
the same way as any other named data, allowing 
them to be retrieved using Interest-Data exchang-
es at the network layer.

Certificates: An NDN certificate represents its 
issuer’s endorsement of the binding between the 
name and the public key; note that the name of 
the key is not necessarily under the issuer’s name-
space, for example, in a web of trust system [3]. 
A certificate is a Data packet carrying a public 
key and can be fetched like any other Data pack-
et. The issuer will put its signing key name with 
other auxiliary information into Data’s signature 
info field. Certificate names follow the naming 
convention “/<prefix>/KEY/<key-id>/<is-
suer-info>/<version>,” where the “pre-
fix” is the name to which the key is bound, and 
the components after “KEY” are the key id, the 
issuer-specified information, and the certificate 
version number. For example, a certificate name 

/ndnfit/alice/KEY/001/N-testbed/002 
indicates that: 
•	 The certificate owner is /ndnfit/alice. 
•	 The certified key has the id 001, which iden-

tifies an instance of Alice’s public key.
•	 The certificate signer sets the issuer informa-

tion to N-testbed, which indicates that it is 
an NDN testbed-issued certificate.

•	 The certificate version is 002.
Trust Policies: Applications define trust poli-

cies that specify which entities are trusted for pro-
ducing which piece of data, and which key should 
be used for which data namespace and for what 
purpose. For example, a trust policy can require 
that the key used to authenticate data must not 
be used to sign encryption keys.

The above three basic components are used 
in the security mechanisms described below. 
The next section shows how an entity can obtain 
these three components from the security boot-
strapping process.

Security Bootstrapping in NDN
Security bootstrapping is the process through 
which an entity obtains its trust anchor and 
certificate, and learns trust policies. The NDN-
Fit example described earlier must go through 
security bootstrapping to be properly initialized. 
In this example, since Alice is the owner of her 
devices and data, Alice’s certificate is set to be 
the trust anchor. In this article, we assume that 
Alice’s certificate has the name /ndnfit/alice/
KEY/001/N-testbed/002, whose meaning is 
explained above.

Obtaining Trust Anchors

An entity needs trust anchors to verify other enti-
ties’ authenticity. Trust anchors are expected to 
be either pre-configured or securely obtained 
through some out-of-band means. Following the 
SDSI model, the NDN security design assumes 
that different systems establish their own trust 
anchors and that entities within those systems 
decide or develop their own means to obtain trust 
anchors.

In our NDNFit example, we take a simple 
approach of manually installing Alice’s certificate 
into the “Owner,” “Sensor,” and “Analyzer” appli-
cations.

Obtaining Certificates

To generate Data packets with valid names and 
verifiable signatures, a (producer) application 
must first obtain a name and a certificate that cer-
tifies its ownership of that name. Consumer appli-
cations do not need to obtain identity certificates 
for Data consumption, although they must obtain 
trust anchors for data verification. Once the trust 
anchor is obtained, an entity can identify a trust-
worthy certificate signer by checking its certificate 
(e.g., a signer’s certificate is the trust anchor or 
endorsed by the trust anchor), then request a cer-
tificate for itself. NDN security offers flexibility to 
application developers in deciding how to obtain 
certificates. Depending on the system design, 
a cloud-based application may obtain its certifi-
cate from a centralized certificate service, while 
a distributed application (e.g., P2P applications) 
may obtain the certificate from its users. We have 
developed the NDN certificate management sys-

Figure 3. The cryptographic relationship between the namespaces /ndnfit and 
/ndnfit/alice, and between /ndnfit/alice and its sub-namespaces.
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tem (NDNCERT) [5] to process such certificate 
requests automatically.

In our NDNFit use case, the trust anchor, 
Alice’s certificate, resides in the Owner applica-
tion on her laptop. Owner plays the role of the 
certificate signer by invoking application program-
ming interfaces (APIs) provided by NDNCERT. 
Sensor and Analyzer are instructed to request 
certificates from Owner using the NDNCERT 
protocol, and Owner can approve the two apps 
using customized out-of-band challenges (e.g., 
Alice may manually check the application’s PIN 
code and approve the corresponding certificate 
request). Two certificates, /ndnfit/alice/
sensor/KEY/… and /ndnfit/alice/analyz-
er/KEY/… , are then issued to the Sensor and 
Analyzer apps, respectively.

Learning Trust Policies

To determine which cryptographic key is legiti-
mate to sign which Data packet when producing 
new data or verifying received data, an applica-
tion needs to obtain trust policies after obtaining 
the trust anchor. As we explain below, NDN apps 
can define their trust policies using a trust schema, 
which is simply a piece of named content that can 
be retrieved like any other content. After obtain-
ing the trust anchor, an application can fetch and 
verify the trust polices from trusted sources. Note 
that there must be a preconfigured default trust 
policy, which can be used to validate the Data 
packets carrying trust policies. A simple default 
policy may define that Data packets carrying trust 
policies must be directly signed by a trust anchor 
with a given name.

In our NDNFit example, Alice can configure 
the trust policies through the Owner user inter-
face; then Owner produces trust policy Data 
packets and signs them with Alice’s private key. 
During security bootstrapping, Analyzer and Sen-
sor fetch the trust policy Data packets, verify them 
using the trust anchor (Alice’s certificate), and 
then save the policies for future use. As shown in 
Fig. 3, after security bootstrapping, both Sensor 
and Analyzer will trust Owner, and each will have 
their own trust policy and certificate under the 
namespace /ndnfit/alice.

The security bootstrapping of Alice’s own cer-
tificate takes place in a different network system 
where the trust anchor is /ndnfit/KEY/…. Alice 
learns of this trust anchor and obtains the certif-
icate /ndnfit/alice/KEY/… from the author-
ity of the namespace /ndnfit via some means 
defined by NDNFit (we omit the details of this 
process due to space limitations).

Data Authenticity
In this section, we show how NDN security helps 
ensure data authenticity automatically. To enable 
this supporting function, users must first define 
their data acceptance policies.

After obtaining their certificates, the apps 
Sensor and Analyzer can produce Data pack-
ets under their corresponding namespaces and 
sign them using their corresponding private keys, 
enabling consumers to authenticate the received 
Data packets by verifying their signatures. NDN’s 
rich name semantics enable applications to use 
names to reason about trust and define trust pol-
icies. Trust policies help consumers validate a 

received Data packet by checking whether the 
packet is signed by the correct key according to 
the policies. In this way, trust policies limit the 
power of each signing key to Data packets with 
specific names, supporting data authenticity at a 
fine granularity. For instance, in our example, the 
key /ndnfit/alice/sensor/KEY/… can be 
limited to sign packets under the prefix /ndnfit/
alice/sensor only.

The authenticity and integrity of received Data 
packets (some of them may be certificates) are 
determined by a combination of the following 
two factors.

Validation by Trust Polices: Structured data 
names and key names provide explicit and mean-
ingful contexts for applications, enabling NDN 
applications to define rules to only accept packets 
signed by keys with specific names. More spe-
cifically, the data name, the signing key name, 
the relationship between the key name and Data 
name, and the trust anchor name must follow 
application-defined rules. We have developed a 
solution, called trust schema [6], to let users and 
applications express their trust policies in a form 
that can be directly executed by applications.

Signature Verification: To verify the signature 
in a received Data packet, a consumer retrieves 
the certificate of its producer (identified by the 
key name in a dedicated section of the packet). 
This certificate recursively points to its signer’s 
certificate and finally arrives at a specified trust 
anchor. The received data packet is considered 
valid only if all the certificates in the above chain 
have valid signatures and satisfy the trust policies.

Using Trust Schemas to Define Trust Policies

Trust schemas make use of NDN’s naming con-
ventions to enable systematic descriptions of trust 
policies, namely: how Data packet names should 
be structured, how packet signing key names 
should be structured, how the components in a 
Data packet name should be related to those in 
its signing key name, and which trust anchor is 
acceptable. 

Upon receiving a Data packet, a consumer 
application first uses its trust schemas to assess 
the packet’s trustworthiness by examining its 
certificate chain to the trust anchor — this takes 
place before any cryptographic signature verifica-
tion is performed. For instance, as shown in Fig. 
4, in addition to Alice (/ndnfit/alice), a user 
named Bob (/ndnfit/bob) is also running an 
NDNFit system. We assume that both Alice’s cer-
tificates and Bob’s certificates are signed by the 
same trust anchor in the /ndnfit namespace. 
Alice’s devices and Bob’s devices produce Data 
packets under their own prefixes, namely /ndn-
fit/alice/sensor/example and /ndn-
fit/bob/sensor/example. Figure 4 shows 
that there are two trust schemas. Schema “rule 
1” accepts Data packets whose name prefix is /
ndnfit/alice, signing key name prefix is /ndn-
fit/alice/KEY, and certificate chain ends with 
the trust anchor /ndnfit/alice. Accordingly, 
only packets signed by Alice and strictly under 
Alice’s prefix are accepted. “Rule 2” has a looser 
requirement: all data packets with the name and 
key name prefix /ndnfit and a certificate chain 
eventually tracing to the anchor /ndnfit” can be 
accepted. Consequently, rule 2 accepts packets 
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produced by either Alice or Bob’s devices.

Signed Interests

Although Interest packets are not signed by 
default, an Interest can and should be signed 
when its use case requires authenticity. For exam-
ple, in an IoT scenario, when a received Inter-
est packet contains a command, a smart home 
device needs to authenticate the sender of the 
Interest before executing the command. Signed 
Interests enable a controller to actuate IoT devic-
es. The Interest signature validation process is the 
same as the one used to validate Data packets.

Data Confidentiality
NDNFit requires data confidentiality and access 
control support to protect sensitive user informa-
tion. NDN’s basic approach to data confidenti-
ality is to use encryption. The Diffie-Hellman key 
exchange protocol [7] is widely used to automati-
cally derive encryption keys for point-to-point ses-
sions. However, Diffie-Hellman does not apply 
to constructing encryption keys for multi-party 
communications, as is the case for NDN applica-
tions in general. By taking advantage of structured 
names that can convey rich semantics, we have 
developed named-based access control (NAC) 
and its enhancement with attribute-based encryp-
tion (NAC-ABE) [8]. NAC/NAC-ABE automates 
the key distribution process for both point-to-
point and multi-party applications. A schematized 
access control solution [9] has also been pro-
posed to further systemize key management for 
access control in NDN networks.

Name-Based Access Control

To grant access rights, NAC uses an “access 
manager” (e.g., an “Owner” app) entity that pub-
lishes granular per-namespace access policies in 
the form of key encryption keys (KEKs, plaintext 
public keys) and key decryption keys (KDKs, 
encrypted private keys). NAC explicitly appends 
an encryption key name to the KDK name with 
a separator ENCRYPTED-BY component; thus, 
consumers can learn the key names after fetching 
the encrypted Data packet.

In our NDNFit example, Alice is the owner of 
all the Data packets produced under the prefix  
/ndnfit/alice. Alice grants access rights to 
Analyzer to read the data under the prefix /
ndnfit/alice/sensor produced by the “Sen-
sor” app.

Key Generation: To grant data access to Ana-
lyzer, Owner generates a new pair of keys and 
produces two Data packets: a KEK packet carry-
ing the KEK in plaintext with the name /ndnfit/
alice/NAC/sensor/KEK/<Key-id> and a 
KDK packet with the name /ndnfit/alice/
NAC/sensor/KDK/<Key-id>/ENCRYPT-
ED-BY/ndnfit/alice/analyzer/KEY/<An-
alyzer-Key-id> , which contains the KDK 
encrypted using Analyzer’s public key. 

Data Production: When producing data, Sen-
sor first generates a symmetric content key (CK) 
for content encryption. Then it encrypts the con-
tent with the CK and packs the encrypted content 
with the name of the corresponding CK, /ndn-
fit/alice/sensor/CK/<CK-id> (in plaintext) 
into the Data packet named /ndnfit/alice/
sensor/example. Finally, it fetches the KEK 
/ndnfit/alice/NAC/sensor/KEK/<Key-
id> and uses it to encrypt the CK, and publishes 
this encrypted CK by putting it into another Data 
packet with the name /ndnfit/alice/sen-
sor/CK/<CK-id>/ENCRYPTED-BY/ndnfit/
alice/NAC/sensor/KEK/<Key-id>.

Data Consumption: As shown in Fig. 5, Ana-
lyzer first fetches the Data packet produced by 
Sensor, and the returned Data packet conveys 
that its content was encrypted using the CK. Ana-
lyzer extracts the CK name from the content and 
automatically generates an Interest to fetch the 
corresponding CK. To decrypt the CK with the 
corresponding KDK, the consumer follows the 
naming convention and combines the KEK name 
extracted from the CK Data name with its own 
identity to construct the Interest /ndnfit/alice/
NAC/sensor/KDK/<Key-id>/ENCRYPT-
ED-BY/ndnfit/alice/analyzer and fetch-
es the KDK. Since the fetched KDK is encrypted 
using Analyzer’s key, Analyzer can decrypt the 
content and get the KDK, use the KDK to decrypt 
the CK, and finally decrypt the content with the 
CK.

Access Control Granularity

To control access control granularity, NAC 
leverages the structured namespace of NDN. 
For example, the above mentioned policy to 
give access to the sensor data can add the 
suffix step/8am/10am  to the policy name-
space (/ndnfit/alice/NAC/sensor/
step/8am/10am), which will restrict access to 
only the steps data and only during the specified 
time interval.

Data and Certificate Availability

Improving Data Availability via In-Network Storage

Because NDN secures data directly, Data packets 
can be retrieved from anywhere, including router 
caches and other storage systems, regardless of 
whether these cache or storage systems are trust-
worthy. All forwarders may cache passing Data 
packets to satisfy future Interests.

Certificate Availability

NDN certificates are carried in Data packets, 
enabling them to benefit from in-network storage. 
To further improve the availability of certificates, 
we also developed the NDN certificate bundle 
[10] to allow each producer to collect all the cer-

Figure 4. Different trust schemas leading to different authentication result.
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tificates in the certificate chain needed to verify 
its data and bundle them together, making the 
whole certificate chain available to consumers in 
a single package.

In the NDNFit example, the producer, Sensor, 
would combine the certificates needed to verify its 
data in a certificate bundle. Specifically, the bundle 
would contain the application certificate (/ndnfit 
/alice/sensor/KEY/…) and the trust anchor 
certificate (/ndnfit/alice/KEY/…). When a con-
sumer application needs to verify the retrieved data, 
it can fetch all the needed certificates directly from 
Sensor.

Discussion

Comparison of NDN and TCP/IP Security

There are two fundamental differences between 
the NDN and TCP/IP security solutions which 
originate from the fact that NDN names data, 
whereas IP names hosts.

Securing Data vs Securing Channels: In TCP/
IP, the basic communication unit is a channel 
between two processes. Consequently, proto-
cols such as IPSec and TLS secure communica-
tion channels (e.g., IP channels or TCP channels). 
However, data delivered through protected com-
munication channels does not directly translate 
to data authenticity — the data could have been 
altered before entering the channel and loses 
cryptographic protection as soon as it leaves the 
channel; and when multiple parties communicate, 
securing the channel between every pair of end-
points can quickly lead to scalability and man-
ageability issues. In contrast, NDN secures data 
directly, removing any reliance on the security 
of intermediate communication channels, allow-
ing applications to protect what really matters to 
them — the data itself.

Establishing Trust Using Name Semantics: 
Existing certificate authentication solutions lack 
the means to effectively reason about trust. For 
instance, current secure communication protocols 
(e.g., HTTPS, QUIC) follow a common practice  
of accepting a signature if it is (in)directly signed 
by a pre-installed certificate authority. However, 
[11] shows that commercial certificate authori-
ties themselves may not be reliable, and signature 
verification alone is not enough to establish trust. 
NDN takes a fundamentally different approach 
to trust establishment. In NDN, entities may uti-
lize local authorities instead of commercial cer-
tificate authorities as trust anchors; trust policies 
are expressed explicitly through the relationships 
between semantically meaningful names in a sys-
tematic way, allowing applications to reason about 
security rather than blindly accepting signatures; 
and naming conventions help facilitate automated 
key management, thus improving system usability.

Remaining Challenges

The development of the NDN architecture has 
guided the creation of a new network security 
framework, which brings both new opportuni-
ties and new challenges [12]. Regarding user pri-
vacy [13], on one hand, Interest packets carry 
requested data names only, without disclosing 
the consumer’s information; on the other hand, 
Data packet names and signatures may disclose 
a producer’s identity if they are not properly pro-

tected. Additionally, both the content store and 
the pending interest table in an NDN router may 
potentially increase the attack surface [14]. The 
NDN research community is actively investigating 
mitigations to these challenges.

Conclusion
In [15], we argued that, by naming and securing 
data directly, NDN offers intrinsic advantages for 
securing network communications. Evidence from 
our efforts developing NDN security solutions 
suggest that this is indeed true. Named, secured 
Data packets (which can also carry certificates 
and trust schemas) can easily be fetched from 
anywhere, serving as a powerful building block for 
security solution development. Furthermore, we 
have learned that one can establish well-defined 
naming conventions to define trust policies in a 
systematic way, as well as to enable name-based 
access control via encryption. We also learned, 
the hard way, the importance of automating secu-
rity operations instead of leaving the problem to 
application developers (who would simply make 
applications work first by leaving security out).

Consequently, NDN secures network com-
munications in a more resilient, intuitive, and less 
fragmented manner than the solutions in today’s 
TCP/IP networks. The development process of 
the NDN security model has convinced us that, 
by building a network architecture based on 
named data, we can effectively develop exciting 
new network security solutions.
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